|
In geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations, rotations, reflections, and glide reflections (see below under classification of Euclidean plane isometries). The set of Euclidean plane isometries forms a group under composition: the Euclidean group in two dimensions. It is generated by reflections in lines, and every element of the Euclidean group is the composite of at most three distinct reflections. ==Informal discussion== Informally, a Euclidean plane isometry is any way of transforming the plane without "deforming" it. For example, suppose that the Euclidean plane is represented by a sheet of transparent plastic sitting on a desk. Examples of isometries include: * Shifting the sheet one inch to the right. * Rotating the sheet by ten degrees around some marked point (which remains motionless). * Turning the sheet over to look at it from behind. Notice that if a picture is drawn on one side of the sheet, then after turning the sheet over, we see the mirror image of the picture. These are examples of translations, rotations, and reflections respectively. There is one further type of isometry, called a glide reflection (see below under classification of Euclidean plane isometries). However, folding, cutting, or melting the sheet are not considered isometries. Neither are less drastic alterations like bending, stretching, or twisting. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Euclidean plane isometry」の詳細全文を読む スポンサード リンク
|